V Международная конференция «Энергосбережение и повышение энергоэффективности. Энергоэффективность в жилом секторе: актуальные направления и практический опыт».

> г. Минск, Беларусь 16 октября 2014 года

Опыт и практика проектирования систем отопления и горячего водоснабжения с использованием возобновляемых источников энергии в странах Евросоюза

**доктор наук, инженер Дзинтарс Яунземс** международный эксперт проекта ПРООН/ГЭФ

## Общее правило «большого пальца»

"Хорошо спроектированная система строительных услуг это та, которую вы не воспринимаете ..."

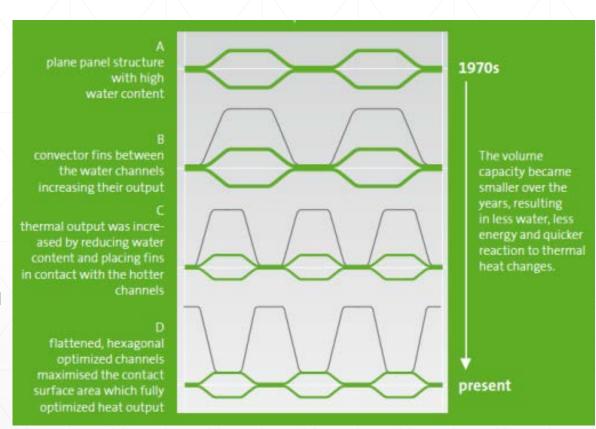
### Тенденции

- 1. Повышение **энергоэффективности** -> здания с почти нулевым потреблением энергии
- 2. Использование возобновляемых источников энергии (на территории, рядом, за пределами площадки, и т.д.) -> уменьшение потребления первичной энергии
- 3. Прирост числа электроприборов и установок
- 4. Различные **местный климат, экономические и граничные условия** приводят к различным решениям
- 5. Более низкое потребление энергии предусматривает:
  - очень точное задание размерности систем
  - технико-экономическое обоснование и оценку конкурентоспособности
  - сочетание источников энергии для базовых и пиковых тепловых нагрузок
  - решение вопросов энергетической безопасности

## Система отопления помещений для низкоэнергетических зданий

- Более низкие теплопотери здания:
  - пониженный спрос на тепло
  - пониженная теплоемкость источника тепла
- Скорость потока в диапазоне 0,75-1,5 м/с (<Dn50)</li>
- До некоторого момента отопление может быть обеспечено с помощью вентиляции (например, нагретого воздуха)
- Остальное / или все тепло может быть обеспечено традиционной системой отопления:
  - с переменным расходом и температурой теплоносителя

## Система отопления помещений для низкоэнергетических зданий


- Расчетные значения температуры системы отопления:
  - 90/70/20 °C
  - 55/45/20 °C
  - 45/35/20 °C



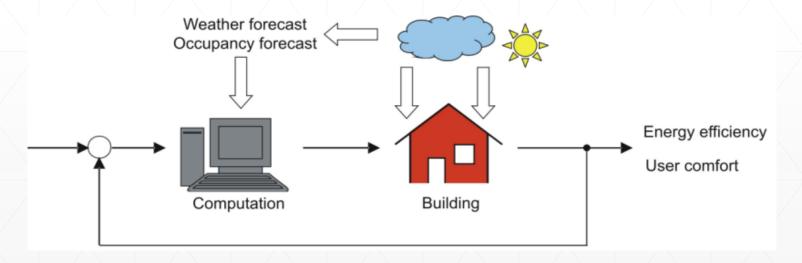
- Отопление через систему вентиляции:
  - <3 м/с и <45 °С в вентканалах</p>
  - низкая объемная теплоемкость воздуха (~4 раза меньше, чем у воды)

## Поверхность тепловых излучателей

- Шестигранная оптимизированная форма
- Площадь поверхности контакта максимальна
- Тепловая мощность полностью оптимизирована
- Снижение расхода воды
- Ребра в контакте с более горячими каналами увеличивают тепловую мощность



## **Изгибы и повороты в системе отопления**


- Правильная гидравлическая балансировка системы:
  - динамические компенсаторы потока
  - термостатические клапаны на отопительных приборах
- Переменный поток теплоносителя
- Постоянное и профессиональное использование системы автоматизации и управления в здании





### Контроль и управление

- **Интеллектуальный контроль** системы отопления:
  - объединить прогноз погоды и строительную физику (термическая масса, тепловой комфорт, размещение, заселенность и т.д.)



### Горячее водоснабжение

- Правильная теплоизоляция
- Система горячего водоснабжения, управляемая спросом
  - снижение тепловых потерь по рециркуляции
- Минимальное количество стояков, диаметр труб *Dn* меньше
- Балансировка

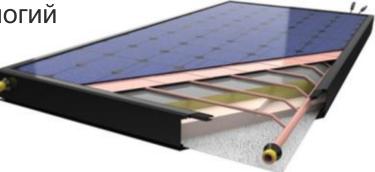
# Подходы к проектированию домов с малым или почти нулевым потреблением энергии

- Различные желаемые уровни температуры для:
  - горячей воды:
    - 50-60 °C (все время и постоянно, например, 55 °C)
  - системы отопления:
    - 30-55 °C (в зависимости от внешних условий)
    - большая часть отопительного сезона: 35-45 °C

Отдельные системы – отопление и ГВС – они никогда не работают одновременно!

Необходимо корректировать тепловую мощность от источника тепла

## Варианты возобновляемых источников энергии


- 1. Производство в зоне обслуживания здания
- **2.** Производство на месте из размещенных на месте ВИЭ (солнце, ветер, ...)
- **3.** Производство на месте из размещенных вне здания ВИЭ (биомасса, ...)
  - **4.** Производство вне здания (ветроустановки, ...)
- **5.** Поставка из источников извне (закупка «зеленой энергии», ...)

С точки зрения устойчивости, энергия для здания (тепловая и электрическая) по определению должна быть произведена на месте или недалеко и с использованием возобновляемых



### Производство ВИЭ на месте

- Тепловая энергия:
  - биомасса
    - эффективность выше и улучшена автоматизация
- Тепловые насосы
  - широкий спектр источников тепла
- Солнечные нагревательные системы:
  - производство тепловой энергии должно соответствовать потреблению
- Комбинация из различных технологий



## **Интегрирование солнечных** коллекторов в фасад здания

тепловые солнечные коллекторы 176 м² для домовой системы горячего водоснабжения

солнечные коллекторы в качестве двойного фасада здания





#### Солнечные PV-панели

- Эффективность солнечных фотоэлектрических панелей зависит от температуры (до 0,02-0,04 % на 1°C)
- На основе годового солнечного излучения в Беларуси, в среднем производство может варьироваться в диапазоне 800-950 кВт-ч/кВт
- Building integrated PV:
  - В качестве внешнего затенения или на стенах
  - В окнах затенение и выработка электроэнергии



### Будущие тенденции

- Использование современных материалов
- Новые концепции и процессы преобразования, например наноструктуры, 3-D солнечные концентраторы и т.д.

 Прозрачный люминесцентный солнечный модульконцентратор.

• Органические PV-панели



### Будущее энергоснабжения

- Различные источники энергии и их комбинация
- Низкотемпературные отопительные системы
- Умная сеть



## Дзякуй за ўвагу!