

Министерство архитектуры и строительства Республики Беларусь Республиканское унитарное предприятие «Институт жилища - НИПТИС им. Атаева С.С.»

Практика проектирования энергоэффективных жилых зданий на основании международного и отечественного опыта их эксплуатации

Терехов С.В.

Заведующий научно-исследовательским и проектно-конструкторским отделом энергоэффективных технологий в строительстве

кандидат технических наук

Тел: +375 29 698 53 65, e-mail: niptis7@mail.ru

ЭПИГРАФ

... опыт – сын ошибок трудных...

А.С.Пушкин

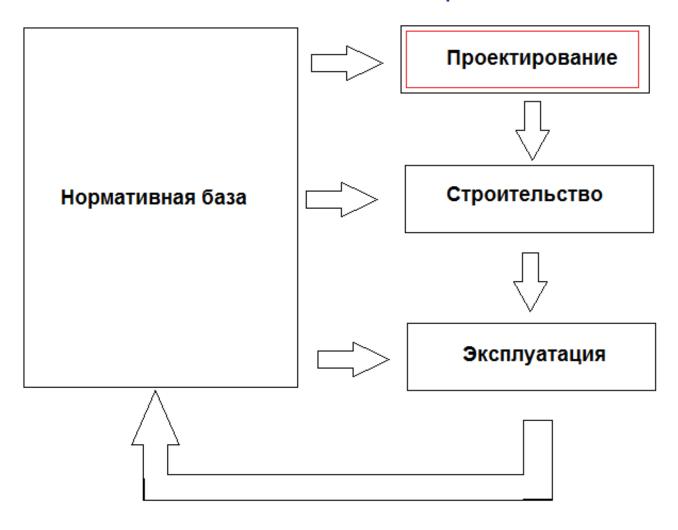
Министерство архитектуры и строительства Республики Беларусь Республиканское унитарное предприятие «Институт жилища - НИПТИС им Атаева С.С.»

Практика проектирования энергоэффективных жилых зданий на основании международного и отечественного опыта их эксплуатации

Терехов С.В.

Заведующий научно-исследовательским и проектно-конструкторским отделом энергоэффективных технологий в строительстве

кандидат технических наук


Тел: +375 29 698 53 65, e-mail: niptis7@mail.ru

Пролог

Республиканское унитарное предприятие «Институт жилища - НИПТИС им. Атаева С.С.» является подрядчиком проекта ПРООН/ГЭФ «Повышение энергоэффективности жилых зданий в Республике Беларусь» по разработке инженерных систем трех энергоэффективных зданий второго поколения в г.Гродно, Минске и Могилеве совместно с УПП «Гродногражданпроект», ОАО «МАПИД» и ОАО «Могилевгражданпроект»

Мы уже можем многое обсудить, базируясь на отечественных практических достижениях в области энергосберегающего строительства, а не только на теоретических выкладках

Бесконечный цикл

Элементы цикла должны рассматриваться в единстве их сущностей

Что сделано

Что делается

Что предстоит сделать

Что сделано

БЛАГОДАРЯ ЧЕМУ СДЕЛАНО ТО, ЧТО СДЕЛАНО

Министерство архитектуры и строительства Республики Беларусь на протяжении многих лет оказывает всестороннюю поддержку развитию инновационных технологий в области проектирования, строительства и эксплуатации энергоэффективных многоквартирных жилых зданий, способствуя повышению энергетической безопасности государства и снижению вредного влияния деятельности человека на окружающую среду

Уникальная ситуация для стран СНГ

Что такое «энергоэффективный жилой дом»

... потребляющий не более 60 кВт ч/м2 год тепловой энергии на отопление и вентиляцию...

... потребляющий не более 40 кВт ч/м2 год тепловой энергии на отопление и вентиляцию...

На бытовом уровне под энергоэффективным жилым домом подразумевается дом с системой утилизацией теплоты удаляемого воздуха

Формулировка «Энергоэффективный жилой дом» (изм.3 (или4??) ТКП45-2.04-196-2010 ЦЕПЛАВАЯ АХОВА БУДЫНКАЎ. ЦЕПЛАЭНЕРГЕТЫЧНЫЯ ХАРАКТАРЫСТЫКІ Правілы вызначэння

энергоэффективный жилой дом - жилой дом, соответствующий по уровню удельного расхода тепловой энергии на отопление и вентиляцию классам B, A и A+.

<u>Теплоэнергетический паспорт исключается из состава ПСД</u>

Классификация зданий по энергопотреблению

В настоящее время действует классификация зданий по показателю потребления тепловой энергии на отопление и вентиляцию

ТКП45-2.04-196-2010 ЦЕПЛАВАЯ АХОВА БУДЫНКАЎ. ЦЕПЛАЭНЕРГЕТЫЧНЫЯ ХАРАКТАРЫСТЫКІ Правілы вызначэння

Таблица 4 — Классы жилых и общественных зданий по потреблению тепловой энергии на отопление и вентиляцию

Обозначение класса	Наименование класса здания по показателю удельного расхода тепловой энергии на отопление и вентиляцию	Отклонение («+» или «-») расчетных (фактических) значений удельного расхода тепловой энергии на отопление и вентиляцию здания q_h^{des} от нормативных значений, установленных в таблице 2, %	Мероприятия, рекомендуемые органам администрации		
A +	Очень высокий	Св. –30 до –100	Экономическое стимулиро-		
Α		Св. –20 до –30 включ.	вание		
В	Высокий	Св. –10 до –20 включ.			
С	Нормальный	Св. +10 до -10 включ.	_		
D	Пониженный	От +10 до +50 включ.	Организационные мероприятия по снижению потерь теплоты зданием		
Е	Низкий	Св. +50 до +125 включ.	Модернизация инженерного оборудования в здании		
G	Очень низкий	Св. +125	Модернизация инженерного оборудования и тепловая модернизация здания		

Классификация зданий по энергопотреблению

ТКП45-2.04-196-2010 ЦЕПЛАВАЯ АХОВА БУДЫНКАЎ. ЦЕПЛАЭНЕРГЕТЫЧНЫЯ ХАРАКТАРЫСТЫКІ Правілы вызначэння

(Измененная редакция, Изм. № 1, 2)

Таблица 2 — Нормативный удельный расход тепловой энергии на отопление и вентиляцию жилых зданий за отопительный период $q_h^{\rm req}$

Этажность	Значение $q_h^{\rm req}$, МДж/м² (кВт·ч/м²), для областных центров Республики Беларусь								
здания	Витебск	Минск	Гродно	Могилев	Брест	Гомель			
1–3	367 (102)	346 (96)	317 (88)	364 (101)	284 (79)	331 (92)			
4	212 (59)	198 (55)	180 (50)	209 (58)	158 (44)	187 (52)			
5	209 (58)	191 (53)	176 (49)	205 (57)	155 (43)	184 (51)			
6	202 (56)	184 (51)	169 (47)	198 (55)	151 (42)	180 (50)			
7–8	194 (54)	180 (50)	162 (45)	191 (53)	144 (40)	173 (48)			
9–11	191 (53)	176 (49)	158 (44)	187 (52)	140 (39)	169 (47)			
12 и более	187 (52)	173 (48)	155 (43)	184 (51)	137 (38)	166 (46)			

Примечание — Нормативные значения удельного расхода тепловой энергии на отопление и вентиляцию за отопительный период q_h^{req} приведены для градусь-суток отопительного периода, рассчитанных согласно 6.1.1.

(Измененная редакция, Изм. № 1, 2)

Класс В: 39-44

Будь моя воля – я пересчитал бы нормы на 22 С в помещении

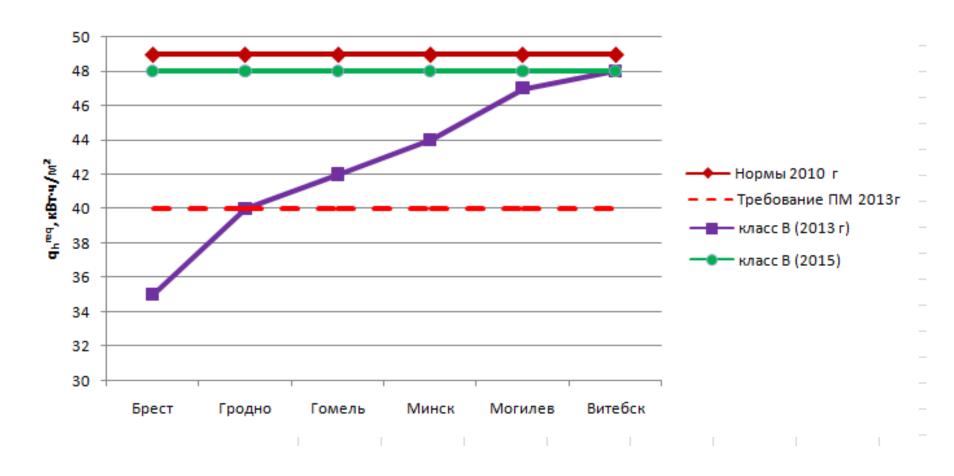
протокол

Требование государства

поручений Премьер-министра Республики Беларусь Мясниковича М.В., данных 8 февраля 2013 г. на семинаре-совещании в г.Гродно по вопросам жилищного строительства

8 февраля 2013 г. № 04/4пр

г.Гродна


гуры совместно с Минжилкомхозом и другими г.Гродно рта 2013 г. подготовить и внести в установленном порядке в совет гутинистров Республики Беларусь проект комплексной программы по развитию энергоэффективного строительства, реконструкции и модернизации жилых домов в Республике Беларусь на 2013 – 2015 годы и на перспективу до 2020 года, предусмотрев в нем:

с 1 апреля 2013 г. проектирование только энергоэффективных жилых домов;

строительство энергоэффективных жилых домов с теплопотреблением с учетом различных конструктивных и технологических решений не выше 40 киловатт-часов на квадратный метр в год;

проведение реконструкции и модернизации существующего жилого фонда только с применением энергосберегающих мероприятий с доведением теплопотребления с учетом различных конструктивных и технологических решений не выше 80 киловатт-часов на квадратный метр в год. При этом решения о капитальном ремонте жилых домов с доведением теплопотребления более 80 киловатт-часов на квадратный метр в год принимаются в исключительных случаях облисполкомами и Минским горисполкомом:

Шаг вперед – два назад

На рисунке указаны верхние границы классов

Классификация зданий по энергопотреблению.

Есть критики принятой системы классификации

А как у «них»?

Классификация зданий по потреблению первичной энергии

- -Отопление и вентиляция
- Охлаждение
- -Горячее водоснабжение
- -Эффективность инженерного оборудования
- -Возобновляемые источники энергии
- -Прочее (на национальном уровне)

В Австрии на классификацию ушло около 10 лет

МЫ СДЕЛАЛИ ПЕРВЫЙ ШАГ В НАПРАВЛЕНИИ КЛАССИФИКАЦИИ ЗДАНИЙ

Предстоит разработать классификацию по остальным видам энергии и выйти на обобщенный показатель (первичная энергия)
В рамках договора с МАИС институт выполняет НИР по нормированию энергопотребления ГВС

Классификация зданий по энергопотреблению

Европейская Комиссия предложила пересмотр законодательства по маркировке энергоэффективности в рамках энергетической стратегии EC, объявленной в феврале 2015 г.

Пересмотр предусматривает четкую идентификацию энергоэффективности продукции, которая сейчас классифицируется по различным шкалам: от A до G и от A+++ до D, а также улучшение соответствия для изготовителей и продавцов.

Так, Комиссия предложила вернуться к хорошо известной и эффективной шкале маркировки энергоэффективности от A до G, включая процесс пересмотра существующих маркировок.

Предполагается, что новый законодательный акт пересмотрит Директиву 2010/30/EU Европейского парламента и Совета от 19 мая 2010 г. по указанию потребления энергии и других ресурсов продукцией, связанной с энергопотреблением, посредством маркировки и стандартной информации о продукции.

Инженерные системы, позволяющие повысить энергоэффективность зданий до классов A и A+

1 Системы утилизации теплоты удаляемого из помещений воздуха

ПРЕДСТОИТ ОТРАБОТАТЬ

- 2 Системы утилизации теплоты сточных вод
- 3 Применение возобновляемых источников энергии

Каждый последующий шаг в повышении энергоэффективности зданий дается большей ценой

Первый не только в Беларуси, но в странах СНГ энергоэффективный 145-квартирный девятиэтажный крупнопанельный жилой дом общей площадью 10000 квадратных метров на базе типовой серии 111-90 был построен в 2007 году в г. Минске по ул. Притыцкого, 107

Расчетное удельное потребление тепловой энергии на отопление и вентиляцию – 31 кВт ч /м2 год

Генпроектировщик - Государственное предприятие «Институт жилища - НИПТИС им. Атаева С.С.»

Застройщик – ОАО «МАПИД».

Финансирование НИОКР – Министерство архитектуры и Строительства Республики Беларусь

ЭНЕРГОЭФФЕКТИВНОЕ ЗДАНИЕ СЕРИИ 111-90

Теплые стены (КПД могут выпускать – изменения в нормативной базе), теплые окна, поквартирный учет и регулирование потребления тепловой энергии, система вентиляции с утилизацией теплоты вытяжного воздуха, неравномерная система утепления.

Энергоэффективное здание в г. Гродно

Энергоэффективное здание в г. Гомеле

Энергоэффективное здание в г. Белгород

Энергоэффективное здание в г. Караганда

Энергоэффективные здания первого поколения

Объемы строительства зданий с системами утилизации теплоты удаляемого воздуха*

	2007	2008	2009	2010	2011	2012
Брестская обл.					2	1
Витебская обл.				3	2	2
Гомельская обл.				2	1	1
Гродненская обл.			1			
Минская обл.						
Могилевская обл.						
г.Минск	1				2	
Итого	1		1	5	7	4

*По данным исполкомов Общее количество зданий – 18

Децентрализованные системы – 15, централизованные системы – 3 Не учтены некоторые здания с «особым статусом»

СИТУАЦИЯ

ПОЗИТИВ

НЕГАТИВ

Минск, ул. Притыцкого

Гродно, ул. Дзержинского Остальные дома

Витебск, ул. Медицинская

ул. Богатырева

В апреле 2013 году была создана межведомственная комиссия по эксплуатации зданий с системами утилизации теплоты вытяжного воздуха

Динамика эксплуатации систем вентиляции (ул.Притыцкого, 107)

По фактическим данным, полученным через систему мониторинга здания

За весь период эксплуатации здания

Год	Ноябрь 2008	Ноябрь 2009	Ноябрь 2010	Ноябрь 2011	Ноябрь 2012	Ноябрь 2013
Процент	65	67	69	67	71	73
включенных						
систем						

В настоящее время показатель застабилизировался на уровне 70-75%

В течение года

Год	Ноябрь 2008	февраль 2009	Апрель 2009	Июнь 2009	Сентябрь 2009	Ноябрь 2009
Процент	65	64	58	58	62	67
включенных						
систем						

До 70% жителей используют установки круглый год

Эксплуатация здания

По зданию Притыцкого 107 проблемы практически отсутствуют

Эксплуатируется более 70% приточно-вытяжных установок

Оборудование работает непрерывно 8 отопительных сезонов

Жители самостоятельно обслуживают системы

Сантехник товарищества оказывает в случае необходимости помощь

Расчетные показатели практически достигнуты

Есть резерв дальнейшей экономии (места общего пользования, открытые окна в подъездах, незакрываются внутренние двери тамбуров)

Жители платят за отопление в 2-8 раза меньше, чем в обычных домах Увеличение расхода электрической энергии – на 40-70кВтч в месяц (по данным МЖКХ)

Эксплуатация здания

В остальных домах практически все системы отключены

ПОЧЕМУ? (не рассматривая вопросы реализации проектов)

Почему не эксплуатируется оборудование?

- 1 Перекос в тарифной политике демотивация населения
- 2 «Кривые» здания ошибки в проектировании, строительстве и эксплуатации

МОТИВАЦИЯ ЭНЕРГОСБЕРЕЖЕНИЯ

<u>Интерес государства</u> Снижение расхода топлива в сфере ЖКХ

Интерес жильца Снижение коммунальных платежей (?) (+ комфортность проживания) Интерес коммерческих застройщиков – жилье повышенной комфортности

Интересы обоих сторон должны быть удовлетворены

Энергетические составляющие вентиляции

	Естественная		Пластинчатый			Роторный		
	вентиляция		теплообменник			теплообменник		
	кВт ч тепл	ТУТ	кВт ч тепл	кВт ч эл	ТУТ	кВт ч тепл	кВт ч эл	ТУТ
Система отопления	4 070	0,611	708		0,106	708		0,106
Электродогрев				531	0,149		106	0,030
Привод вентиляторов				279	0,078		279	0,078
Bcero	4 070	0,611	708	810	0,333	708	385	0,214
Интерес государства								
% снижения ТУТ		0%			45%			65%
					1			
"Интерес жильца"								
Соотношение тарифов 1:3	4 070		3 139	23%		1 863	54%	
Соотношение тарифов 1:10	4 070		8 810	-116%		4 559	-12%	
								/
Расчетные условия								
Температура в помещении	18 C							
Воздухообмен	110 м3/ч							

Расчет выполнен для одной квартиры при нормативном воздухообмене Комфортная температура не есть 18C

Мотивация населения

САВЕТ МІНІСТРАЎ РЭСПУБЛІКІ БЕЛАРУСЬ

СОВЕТ МИНИСТРОВ РЕСПУБЛИКИ БЕЛАРУСЬ

протокол

РЕСПУБЛИКИ БЕЛАРУСЬ

ПРАТАКОЛ ПАСЯДЖЭННЯ ПРЭЗІДЫУМА САВЕТА МІНІСТРАЎ РЭСПУБЛІКІ БЕЛАРУСЬ

28 января 2014 г.

No 2

г. Мінск

г. Минск

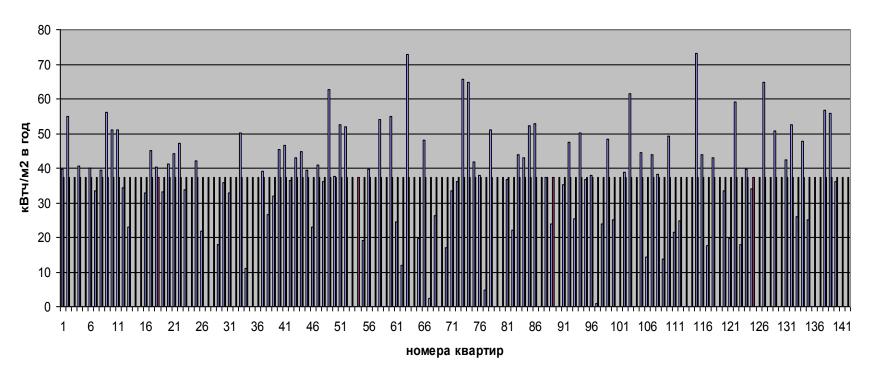
ВЫПИСКА

 О концепции Закона Республики Беларусь "Об электроэнергетике"

- 1.1. Одобрить концепцию Закона Республики Беларусь "Об электроэнергетике" и предложения Минэнерго по совершенствованию системы управления энергетической отраслью.
 - 1.2. Минэкономики совместно:
- с Минэнерго, Минюстом, концерном "Белнефтехим" и другими заинтересованными до 18 марта 2014 г. проработать вопрос о государственном органе, регулирующем вопросы нефти и нефтепродуктов, и внести соответствующие предложения в Совет Министров Республики Беларусь;
- с Госстандартом, Минжилкомхозом, Минстройархитектуры, Минэнерго, облисполкомами и Минским горисполкомом до 1 марта 2014 г. в установленном порядке ввести дифференцированные тарифы на тепловую и электрическую энергию для энергоэффективных домов.
- 1.3. Координацию работ по выполнению поручений, содержащихся в настоящем разделе, возложить на Первого заместителя Премьер-министра Республики Беларусь Семашко В.И.

Премьер-министр Республики Беларусь ДЛЯ ДАКУМЕНТАЎ

ТАРИФЫ ИЗМЕНЕНЫ НЕ БЫЛИ


Государство не хочет мотивировать жителей приносить ему прямую выгоду

Нас ожидают проблемы при эксплуатации новых пилотных объектов

Эксплуатация здания. Новые проблемы

Удельное потребление тепла на отопление квартир и среднее значение, кВтч/м² в год отопительный сезон 2009-2010 гг.

Удельное потребление тепла в квартирах и средний уровень в сезоне 2009-2010 гг.

12% квартир – потребление тепловой энергии – «0», но тепло в явном виде никто не ворует. Различные настройки автоматики по комфортной температуре Товарищество приняло новую методику

Эксплуатация здания. Новые проблемы

В рамках НИР, финансируемого МАИС, в институте разработана и испытана система учета тепловой энергии, учитывающая перетоки теплоты между квартирами

Белорусские производители теплосчетчиков имеют техническую возможность реализовать данную систему.

В настоящее время в рамках проекта ПРООН проектируется 3 здания с указанныйми системами

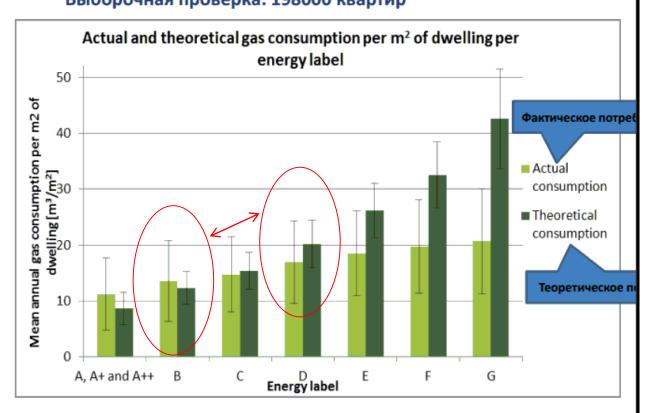
Сопутствующие моменты энергосбережения Повышение комфортности жилья

- наличие воздухообмена как такового
- -регулируемый по потребности воздухообмен
- -качество воздуха (фильтрация)
- -В межотопительный период имеется возможность проветривания квартир,
- -выходящих на одну сторону фасада
- и т.д

ИНТЕРЕС СО СТОРОНЫ ИНВЕСТОРОВ В СТРОИТЕЛЬСТВЕ ЗДАНИЙ С СИТЕМАМИ УТИЛИЗАЦИИ ТЕПЛОТЫ УДАЛЯЕМОГО ВОЗДУХА

Почем свежий воздух для народа?

По данным УКСов исполкомов удорожание стоимости здания за счет применения систем вентиляции с утилизацией теплоты вытяжного воздуха составляет 6-12% в зависимости от конструктивной системы здания


При качественной оценке сметной документации таких зданий можно пользоваться цифрой 10%

Ожидаемый эффект. О некоторых иллюзиях

Для сравнения взгляд за границу:
Исследование Visscher-Majcen-Itard, Нидерланды, 2012
Фактическое и теоретическое потребление газа по классам
энергоэффективности
Выборочная проверка: 198000 квартир

Анализ даёт похожий результат, что и анализ GBV: конечная потребность в энергии согласно паспорту «отопление+г орячая вода» 1:5; фактическое потребление «отопление+г орячая вода»

1:2

Слайд презентации Ева Бауэр, Австрийский союз общественных строительных объединений 28.04.2014

Ожидаемый эффект О некоторых иллюзиях

По имеющейся практике и данным из зарубежных источников фактическое потребление зданием энергоресурсов может существенно отличаться от расчетного ввиду влияния человеческого фактора, который не учитывается в расчетных методиках.

Несоответствие фактических энергетических характеристик здания расчетным не может напрямую быть использовано в качестве повода для судебных исков без дополнительных разбирательств (Россия, Республика Беларусь. Четко отделять недостижение результатов по причине человеческого фактора и поведенческих особенностей жителей от строительного брака)

Проблемы, с которыми столкнемся

Здание - как товар

Необходимость подтвердить характеристики энергоэффективности Предполагаемая сертификация зданий

Судебные иски за несоответствие фактических характеристик расчетным

Как оценить реальное потребление зданием тепловой энергии на отопление и вентиляцию

СТБ 2409-2015

Метод определения удельного расхода тепловой энергии на отопление и вентиляцию эксплуатируемых жилых зданий

Рассматривается возможность интегрирования методики стандарта в информационную систему ЖКХ для оценки удельного расхода тепловой энергии на отопление и вентиляцию эксплуатируемых жилых зданий в реальном масштабе времени

Накопленный опыт (сын ошибок трудных)

Знаем как нужно проектировать энергосберегающие здания и как нельзя

Знаем как нужно строить энергосберегающие здания и как нельзя

Знаем как нужно эксплуатировать энергосберегающие здания и как нельзя

РЕКОМЕНДАЦИИ

РЕКОМЕНДАЦИИ ПО ОПТИМИЗАЦИИ ПРОЕКТНЫХ, ТЕХНИЧЕСКИХ И ОРГАНИЗАЦИОННЫХ РЕШЕНИЙ НА СТАДИИ ПРОЕКТИРОВАНИЯ И ЭКСПЛУАТАЦИИ ЭНЕРГОЭФФЕКТИВНЫХ ЗДАНИЙ

P1.02.410.13

Срок действия с «<u>24</u>» <u>04</u> 2013 г. до «24» <u>04</u> 201<u>6</u> г

УТВЕРЖДАЮ

Директор Республиканского унитарного предприятия «Институт жилища – НИПТИС им. Атаева С.С.»

В.М. Пилипенки «10» 12 2042 г. М.П.

Минск 2013

Теоретическая часть

Задача: вооружить проектировщиков соответствующими знаниями

Практическая часть

Задача: Дать конкретные технические решения.

Что делается

УКАЗ ПРЕЗИДЕНТА РЕСПУБЛИКИ БЕЛАРУСЬ 22 апреля 2015 г. № 166

О приоритетных направлениях научно-технической деятельности в Республике Беларусь на 2016–2020 годы

Приоритетные направления научно-технической деятельности в Республике Беларусь на 2016–2020 годы

1. Энергетика и энергоэффективность, атомная энергетика: энергобезопасность и энергосбережение; энергоэффективные технологии и техника; атомная энергетика; возобновляемые источники энергии, местные и вторичные энергоресурсы

НИР, финансируемые Министерством архитектуры и строительства Республики Беларусь

Разработка нормативов по потреблению тепловой энергии на отопление и вентиляцию общественных зданий и зданий индивидуальной жилой застройки

Нормирование потребления энергоресурсов в системах горячего водоснабжения

Разработка технических решения для проектируемых многоквартирных жилых зданий позволяющих поэтапно в процессе эксплуатации повысить их потребительские качества и класс по потреблению энергии

Проект ПРООН/ГЭФ

«Повышение энергетической эффективности жилых зданий в Республике Беларусь»

Проектирование и строительство энергоэффективных жилых зданий второго поколения

Благодаря Проекту в Республике Беларусь появилась возможность реализовать в конкретных объектах опыт, полученный при проектировании, Строительстве и эксплуатации энергоэффективных зданий первого поколения и перейти к энергоэффективным зданиям второго поколения

Концептуальный подход

ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ЭКСПЛУАТАЦИИ ЗДАНИЙ

Обеспечение комфортных условий для проживания жильцов

Достижение индикаторов проекта ПРООН в рамках сформированного бюджета

Сохранение установленных мощностей оборудования системы отопления и горячего водоснабжения в теплопункте с целью обеспечения возможности перевода инженерных систем здания в обычный режим функционирования

Максимальный охват системой диспетчеризации инженерного оборудования и приборов учета

Наличие информационной системы, отображающей в режиме реального времени потребление и генерацию энергии (возможно с выходом в интернет)

Антивандальная защита внешних элементов инженерного оборудования

Обеспечение заинтересованности жителей в эксплуатации инженерного оборудования посредством оптимизации режимов его функционирования по отношению к действующим тарифам на энергоносители.

Вовлечение жителей в процесс оптимизации расхода энергоносителей

Основные характеристики зданий

осповные характеристики здании						
Объект	МАПИД	ГРОДНО	МОГИЛЕВ			
Адрес	г. Минск, Лошица-9, дом № 7	г. Гродно, ул.Дзержинского	г. Могилев, м-рн Спутник			
Разработчик проекта	ОАО «МАПИД»	УП «Гродногражданпроект»	ГП«Институт жилища –			
			НИПТИС им Атаева С.С.			
Этажность	19 эт	10 эт	10 эт			
Конструктивное решение	Крупнопанельное	Кирпичное с попереч- ными	Крупнопанельное			
		несущими стенами				
Отапливаемая площадь, м ²	9209	10335	13914			
Площадь жилых помещений, м ²	3608	4023	5691			
Чердак	Теплый	Холодный	Холодный			
Коэффициент остекленности	0,15	0,2	0,2			
Компактность расчетная	0,31	0,26	0,29			
(рекомендуемая по ТКП 45-2.04-196)	(0, 25)	(0,29)	(0,29)			
Характеристики ограждающих						
конструкций, в том числе:						
наружные стены	трехслойные ж/б панели	Кирпичная кладка, клад-ка	трехслойные ж/б панели			
		из я/б блоков с утепли-телем				
R пр стен	3,39	4,11	4,30			
Окна	Двухкамерный с/п, мягкое НЭ	То же	То же			
	покрытие					
R пр окон	1,09	1,10	1,09			
Цокольное перекрытие	ж/б плиты с утеплителем	То же	То же			

То же

2,5

То же 6,0

16,8

A+

2,92

6,18

15,5

A+

ж/б плиты с утеплителем

1,40

6,0

23,2

A+

Чердачное перекрытие

здания, кВт·ч/м²

Расчетный удельный расход

тепловой энергии на отопление

Класс по потреблению тепловой

энергии на отопление и вентиляцию,

Rпр ц.п.

Rпр ч.п.

Основные технические решения

	Гродно	Минск	Могилев
Оболочка здания с улучшенными теплозащитными свойствами	+	+	+
Светопрозрачные конструкции с улучшенными теплозащитными свойствами	+	+	+
Система вентиляции с утилизацией теплоты удаляемого воздуха	+	+	+
Тепловой насос для отопления и горячего водоснабжения зданий	+		
Фотоэлектрические батареи	+	+	+
Циркуляционные насосы с частотным приводом	+	+	+
Система отопления с горизонтальной разводкой, поквартирным регулированием и учетом потребленной тепловой энергии	+	+	+
Низкотемпературная система отопления	+		
Гелиоколлектор для системы горячего водоснабжения			+
Утилизатор теплоты серых канализационных стоков для системы горячего водоснабжения	+	+	+
Система диспетчеризации инженерного оборудования здания	+	+	+
Электронное информационое табло для жителей	+	+	+

Красным цветом выделены технические решения энергоэффективных зданий 2-го поколения

Что мы ожидаем, кроме класса А+

Здание в Гродно (с «наворотами» 2-го поколения)

Элементы баланса	Тепловая энергия, кВт∙ч	Эквивалент т.у.т	Электро- энергия, кВт·ч	Эквивалент т.у.т	Общее потребле- ние,т.у.т	-
Отопление и вентиляция	160196	24,0				
Электро- энергия на рекуперацию			79349	22,2	22,2	
Тепловой насос, ото- пление	120147	-18,0	30037	8,4	8,4	ı
Догрев ото- пления теп- лосетью	40049	6,0			6,0	
- TD-G	498047	74,7				
ГВС Тепловой насос, ГВС	254191	-38	63548	17,8	17,8	
УТСВ	133912	-20,1	1577	0,442	0,4	
Догрев ГВС теплосетью	109944	16,5			16,5	
Фотоэлек- трическая станция			62400	-17,472	-17,5	
итого		22,5		31,4 (53,9	

139,2/53,9 = 2,6

		· • · · · · · · · · · · · · · · · · · ·
Элементы баланса	Тепловая энергия, кВт-ч	Эквивалент т.у.т.
Отопление и вентиляция	429944	64,5
ГВС	498047	74,7
Итого	927991	139,2

Таким образом, расчетное годовое потребление энергии в эквиваленте условного топлива проектируемого здания в 2,6 раза ниже здания базовой линии.

Все здания: здания – «лаборатории»

Без ущерба для жильцов будут получены данные долгосрочного мониторинга

- -температуры и влажности приточного и вытяжного воздуха
- -уровня воздухообмена, динамики его изменения в зависимости от потребности жильцов
- -потребления электрической энергии приточно-вытяжными установками
- и т.д.

Использование приобретенного опыта

Проектирование систем принудительной вентиляции с утилизацией теплоты вытяжного воздуха с учетом разработанных рекомендаций (повышение эксплуатационной надежности, снижение эксплуатационных издержек, требования к системам автоматизации и т.д.)

Система диспетчеризации инженерного оборудования Цели:

Получение достоверных данных о функционировании инженерного оборудования Получение достоверных данных об энергетическом балансе здания

Технический учет по каждому источнику/потребителю энергии

- -Тепловые насосы
- -Фотоэлектрическая блок-станция
- -Утилизатор теплоты сточных вод
- -Гелиоводонагреватели

Приточно-вытяжные установки с утилизацией теплоты вытяжного воздуха

- -технический учет потребляемой электроэнергии
- -регистрация температуры и влажности приточного и удаляемого воздуха

Получим достоверную информацию на риторический вопрос: Сколько потребляем электричесва для экономии тепловой энергии

Необходимо искать пути снижения потребления электрической энергии

Применение вентиляторов с ЕС приводами

Оптимизация конструкции установки и алгоритмов ее функционирования, обеспечивающие снижение потребления электрической энергии на технологические нужды

Применение водяных нагревателей вместо электрических

Гибкая настройка системы по уровню воздухообмена, особенно в зоне малых расходов

Отечественные производители освоили выпуск квартирных вентустановок с двигателями ЕС и систем автоматики к ним.

Активно сотрудничают с институтом в плане повышения технических характеристик оборудования

Что предстоит сделать

Что дальше (укрупненно)?

- -Замкнуть цепью обратной связи наработанную практику проектирования, строительства и эксплуатации энергоэффективных зданий второго поколения и нормативную базу для указанных процессов (резервные источники теплоснабжения зданий с тепловыми насосами – электрокотельные? Резервный тепловой насос?)
- Нельзя пенять только на тарифную политику есть проблемы по реализации проектов. Поэтому повышение качества проектных и строительных работ
- -Активная пропаганда положительного опыта энергоэффективного жилищного строительства в средствах массовой информации. Рубль лучший пропагандист.
- -Разработка более эффективного энергосберегающего оборудования
- -Разработка новых конструктивных систем, технически готовых в последующем к установке энергосберегающего инженерного оборудования (в том числе использующих вторичные и возобновляемые источники энергии) по мере «созревания» жильцов и увеличения тарифов (сбалансированных!) на энергоносители для населения.
- -Переход от строительства точечных пилотных энергосберегающих объектов, носящих скорее демонстрационный характер, к энергосберегающим кварталам, позволяющим реально снизить потребление ископаемого топлива
- -Снижение энергопотребления в существующем жилом фонде -(+26)

Эпилог

ВЕРНЫМ ПУТЕМ ИДЕМ!

БЛАГОДАРЮ ЗА ВНИМАНИЕ!