

Концепция каталога технических решений по повышению энергоэффективности, включающего оптимизированные сценарии для строительного сектора Беларуси

Д-р Алфио Галата

Международный эксперт: Консультант по энергетическому аудиту жилых зданий alfio.galata@agsaving.it www.agsaving.it

ПРОЕКТ ПРООН/ГЭФ

Энергоэффективное здание (ЭЭЗ)

Ответ на главный вопрос:

Как нам использовать потенциал энергоэффективности с помощью инновационных мер, направленных на повышение энергоэффективности, и помочь всей цепочке заинтересованных сторон...

...радикально изменить способ принятия решений,

касающихся зданий и их энергетической инфраструктуры?

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Энергоэффективное здание (ЭЭЗ)

Огромные усилия и деньги вкладываются в разработку норм, директив, рекомендаций по поводу передовых практик и процедур оценки энергоэффективности в целях повышения энергоэффективности в зданиях.

Передовые решения оболочки здания (например, стены, окна, крыши и т.д.) и <u>"умные" технологии энергоснабжения</u> (например, системы отопления, охлаждения, вентиляции, освещения, бытовые приборы и т.д.) достаточно быстро завоевывают рынок, оказывая существенное влияние на ближайшее и среднесрочное развитие и одновременно улучшая <u>осведомленность</u> и <u>поведение потребителей</u> в области устойчивого энергетического развития.

Строительная отрасль

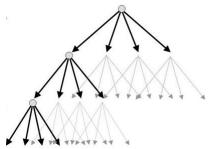
Оптимизация ори<mark>ента</mark>ции здания Использование эффективных систем и компонентов оболочки здания

Использование
эффективных
энергосистем и
возобновляемых
источников энергии

Управление энергопотреблением

Оптимизация энергопотребления и жоммунальных платежей

Вовлечение потребителей: поведение, осведомленность


Энергоэффективное здание (ЭЭЗ)

Современная концепция энергоэффективного здания (ЭЭЗ) рассматривает здание (например, проектирование, инженерно-технические работы, соблюдение стандартов, применение передовых технологий и т.д.) и энергоинфраструктуру (например, энергетический аудит, методы мониторинга и планирования, управление энергосистемами) как единое целое.

Энергоэффективность (единовременный комплекс оптимальных мер энергосбережения) *заключается в использовании энергии......* **там** и **тогда**, **когда это строго необходимо**

Потребление энергии/ ресурсов растет, а используемые методы управления пока не являются устойчивыми. Каждое здание имеет характерные для него компоненты оболочки, энергоинфраструктуру, уровень и характер энергопотребления.

Ответственные лица, принимающие решения и имеющие полномочия, чтобы повлиять на планы действий, программы и мероприятия по управлению в области энергетики, часто **далеки от проблемы**; например, сложная иерархическая система разделяет тех, кто занимается установкой высокопроизводительных систем, и тех, кто дает разрешение на их установку.

Руководители предприятий и чиновники не движутся в нужном направлении.

Энергоэффективное здание (ЭЭЗ)

Изменение сегодняшних моделей поведения для реализации **мер по повышению энергоэффективности обычным способом** является большой **проблемой** в силу:

Регламента принятия решенийПорядка реализации / управления

Характера энергопотребления

Таким образом, главными вопросами становятся следующие:

- какие методы строительства наиболее отвечают действующим требованиям и стандартам?
- какие строительные компоненты и технологии следует выбрать?
- о какие меры энергосбережения принять в первую очередь? и
- как реализовать эти решения на систематической основе?

Навигационная система по повышению энергоэффективности

Если провести аналогию с автомобилем, большинству организаций просто нужна всеобъемлющая "Навигационная система (навигатор) по повышению энергоэффективности", чтобы двигаться в нужном направлении.

Ядром этой *Навигационной системы* мог бы стать *Каталог сценариев оптимизации*, позволяющий осуществлять <u>выбор</u>, <u>внедрение</u> и <u>управление</u> мерами по повышению энергоэффективности по одному из стандартных сценариев.

Каталог сценариев оптимизации: стандартная методика, позволяющая:

- запустить процесс;
- о ввести льготы за счет более эффективного использования ресурсов или планирования инвестиций (**изначально**),
- действовать быстро, чтобы оптимизировать происходящий в настоящее время процесс (краткосрочная перспектива);
- о повышать эффективность происходящего в данное время процесса (долгосрочная/среднесрочная перспектива);
- обеспечивать эффективность принимаемых решений и предпринимаемых действий
 Реализация, Оценка
- и так далее.

Каталог сценариев оптимизации (КСО)

Типичные примеры сценариев оптимизации (их перечень в Каталоге не будет исчерпывающим), отвечающие потребностям **Решений по повышению энергоэффективности** для **строительной отрасли**, могут включать:

- оболочка/компоненты и энергоинфраструктура зданий:
 - какие меры энергосбережения являются наиболее подходящими?
 - каковы результаты анализа затрат и выгод?
- технологии использования возобновляемых источников энергии::
 - какие варианты являются наиболее подходящими?
- Режим работы систем вентиляции и кондиционирования, освещения и водоснабжения:
 - что происходит, когда объект используется и когда не используется? что необходимо сделать?
 - о какое оборудование установлено? какое оборудование необходимо установить?
 - регулируется ли каждая энергосистема вручную, или с помощью заданного режима или установленных на месте датчиков?
 - работает ли каждая энергосистема в оптимальном режиме? регулируется ли она автоматически с учетом погоды и заполненности здания?

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (КСО)

В **Каталоге сценариев оптимизации (КСО)** можно отслеживать, удовлетворять и расширять потребность в эффективной **Системе управления энергопотреблением** с учетом конкретной категории здания и соответствующих организационных методов (в контексте здания и (или) территориальной сети).

"**Каталог CO"** станет главным инструментом, позволяющим значительно расширить спектр мер, которые смогут принимать ответственные лица, руководители предприятий энергоснабжения и другие основные участники процесса управления энергопотреблением.

лицо, ответственное за принятие решений, будет осведомлено о доступных ИКТ, вариантах использования ВИЭ, о том, как должен проводиться энергоаудит и как можно реализовать программы энергосбережения на макроуровне на систематической основе;

управляющий зданием будет иметь представление о том, как работает Система управления энергопотреблением, и сможет отслеживать уровень энергопотребления в зданиях, включая возможность назначать задачи по выполнению мер по энергосбережению до их полного выполнения или завершения.

лицо, ответственное за энергоснабжение/ объект, сможет управлять действиями - уже совершенными или теми, которые необходимо совершить - в пределах своих должностных обязанностей.

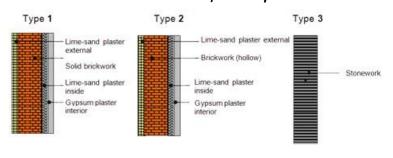
Каталог сценариев оптимизации (КСО)

макроуровне каждый отдельный сценарий оптимизации (CO) должен включать сколько разделов:
контекст: режимы использования здания и функциональные зоны, требования к зданию, ориентировочные показатели, правила и стандарты;
<i>реализация</i> : стандартизированный процесс ISO, структура принятия решений, порядок организации мероприятий, основные функции и пользователи;
выбор технологии: система "умного" учёта, система управления зданием, "умная" система освещения, инструменты моделирования энергопотребления;
политика и регулирование: правила, действующие внутри организации; нормы и директивы, применимые на местном, национальном и европейском уровне;
оценка: основные показатели эффективности (ОПЭ) и показатели энергетической эффективности (ПЭЭ);

ПРОЕКТ ПРООН/ГЭФ

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

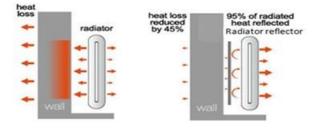
Каталог сценариев оптимизации (КСО)

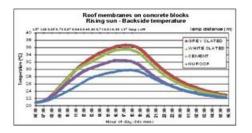

Структуру можно организовать в соответствии со следующим:

Первый вариант: *технические категории*,

например:

- Элементы здания
- Варианты планировки
- Отопление
- Вентиляция
- Кондиционирование воздуха


- Освещение
- Электрооборудование
- Принципы настройки системы
- Возобновляемые источники
- Порядок организации мероприятий



Каталог сценариев оптимизации (КСО)

СО №02: УСОВЕРШЕНСТВОВАТЬ ЭКСПЛУАТАЦИЮ СУЩЕСТВУЮЩЕЙ СИСТЕМЫ ПРИНУДИТЕЛЬНОЙ ВЕНТИЛЯЦИИ

ОСНОВНЫЕ ЗАДАЧИ

Зачастую существующие системы принудительной вентиляции в зданиях не эксплуатируются должным образом, что приводит к общей потере эффективности, которая может серьезно отразиться энергопотреблении.

Цель - избежать потерь энергии из-за неправильной работы, слабой эксплуатации и износа компонентов. Проверка правильности работы систем ОВКВ позволит избежать неэффективного потребления энергии, а также снизит риск поломки и быстрого роста затрат. Таким образом, регулярное техобслуживание оборудования и средств управления имеет смысл с коммерческой точки зрения.

Системы ОВКВ - Изображение с сайта www.learnhvac.ora

ПРИМЕНЕНИЕ

Настоящий СО настоятельно рекомендуется для зданий с установленной системой ОВКВ. Определенные мероприятия по модернизации/обслуживанию могут повлиять на некоторые детали/компоненты.

ССЫЛКИ

- Трест по проблемам сокращения выбросов парниковых газов www.carbontrust.com
- □ Учебник для 12-летней школы для управляющих объектами

ПОТЕНЦИАЛЬНОЕ ВЛИЯНИЕ

Система ОВКВ в здании - это ценный ресурс, и она должна быть всегда эффективной: при отсутствии регулярного обслуживания потребление энергии может возрасти вплоть до 30%.

ЭТАПЫ РЕАЛИЗАЦИИ

Этап 1: Оценка технологии и оборудования. Чтобы получить четкое представление о том, какие системы нуждаются в техническом обслуживании, тщательный анализ систем ОВКВ, электрических приборов и всего оборудования должен проводить квалифицированный технический специалист.

Этап 2: Составление графика обслуживания. Управляющий и технические специалисты должны составить план технического обслуживания с учетом имеющихся инженерных установок, оборудования и бюджета. Важно установить очередность действий, чтобы гарантировать и энергосбережение, и комфорт потребителей в школе.

Несколько примеров действий в рамках технического обслуживания описаны ниже:

- Регулярное обслуживание для оптимального функционирования. Текст
- Обслуживание котлов. Текст.
- Проверка конденсаторов Текст.
- Проверка установки кондиционирования воздуха и комфортного охлаждения. Текст.
- Очистка вентиляторов, фильтров и воздухопроводов для повышения эффективности до 60%. Текст.

РЕКОМЕНДУЕМЫЕ ПОСТАВЩИКИ

Указать поставщиков, наилучшим образом соответствующих правилам Компании.

СО, ИМЕЮЩИЕ ОТНОШЕНИЕ К ДАННОМУ СЦЕНАРИЮ

Перечислить другие сценарии оптимизации, которые могут отразиться на реализации этого сценария.

ССЫЛКА НА УСТАНОВЛЕННЫЕ ПРАВИЛА

Для данного сценария оптимизации нет установленных правил

ПРОЕКТ ПРООН/ГЭФ

Каталог сценариев оптимизации (КСО)

Структуру можно организовать следующим образом:

Второй вариант: *ISO 50001 – 2 международных стандарта*.

УПРАВЛЕНЧЕСКИЕ АСПЕКТЫ

Планировать:

- Политика/цель/Целевы е показатели
- Ресурсы

Делать:

- Обучение
- Общение
- Контрольноизмерительная аппаратура: системы и процессы

Проверять:

- Исправление недостатков/Профилакт ика
- Внутренний аудит

Действовать:

• Управленческий анализ

Каталог сценариев оптимизации (КСО)

Название: Установить систему рекуперации Классификационная маркировка: D3.ххх

Область применения **ДЕЛАТЬ**

Взаимосвязанные сценарии (от)

Сценарии влияния (до)

Описание:

тепла

Воздухо-воздушные рекуперационные системы могут использоваться для сохранения большой части энергии здания, которая иначе бы была потеряна в форме тепла через систему отведения воздуха.

Ссылки:

IEA TASK 33 -2008

ОЦЕНОЧНЫЕ ПЕРВОНАЧАЛЬНЫЕ КАПИТАЛЬНЫЕ издержки:

€€€€

Рекомендованные приложения:

Для повышения эффективности использовать в сочетании с ТЭЦ

ОЦЕНОЧНЫЕ ЗАТРАТЫ НА ЭКСПЛУАТАЦИЮ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ В ГОД:

€€€€€

Альтернативные технологии:

Системы когенерации энергии (комбинированная выработка тепла и электроэнергии)

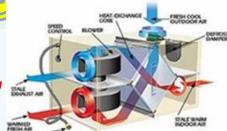
ОЦЕНОЧНОЕ СНИЖЕНИЕ ЭНЕРГОЗАТРАТ В ГОД:

€€€€

Дополнительная информация:

Кроме того, косвенное испарительное охлаждение/отопление - это форма восстановления тепла, которая может применяться в существующих системах путем переоборудования для снижения эксплуатационных затрат и пиковой потребности в энергии; такой подход позволяет экономить средства в новых сооружениях за счет оптимизации оборудования.

ОЦЕНОЧНЫЙ ПЕРИОД ОКУПАЕМОСТИ:



Пример:

Рабочая планировка системы рекуперации тепла

Временные рамки реализации:

Каталог сценариев оптимизации (КСО)

Название: Использовать тепловое изображение Классификационная маркировка: **P1.xxx**

Область применения Взаимосвязанные сценарии (от) Сценарии влияния (до)

Описание:

ПЛАНИРОВАТЬ

Тепловое инфракрасное изображение - это полезный инструмент для проверки элементов здания и обнаружения точек и способов утечек энергии из оболочки здания.

Ссылки:

Balaras et al.-2003

ОЦЕНОЧНЫЕ ПЕРВОНАЧАЛЬНЫЕ КАПИТАЛЬНЫЕ ИЗДЕРЖКИ:

€€€€

Рекомендованные приложения:

Нанять опытную организацию для проведения энергоаудита, который может серьезно различаться в зависимости от нескольких аспектов.

ОЦЕНОЧНЫЕ ЗАТРАТЫ НА ЭКСПЛУАТАЦИЮ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ В ГОД:

€€€€

Альтернативные технологии:

Разработать стратегический план управления энергопотреблением

ОЦЕНОЧНОЕ СНИЖЕНИЕ ЭНЕРГОЗАТРАТ В ГОД:

€€€€

Дополнительная информация:

Тепловую проверку можно провести за короткое время, и она позволяет выявить потенциально опасные проблемы. Проверка холодной или горячей воды может выявить проблемы и устранить их, сократив таким образом энергопотери.

ОЧЕЧОЧНЫЙ ПЕРИОЛ ОКУПЛЕМОСТИ:

Пример:

Результаты проверки с применением теплового изображения

Временные рамки реализации:

Каталог сценариев оптимизации (КСО)

Процесс принятия решений в рамках **Навигационной системы мер повышения** энергоэффективности должен обеспечить точную оценку влияния Сценариев оптимизации для эксплуатационных служб. Во многих случаях оценка сценариев оптимизации определяется применением программных средств моделирования в строительстве.

Поскольку каждое здание уникально, объем и влияние СО специфичны для каждого конкретного здания.

Значит, для каждого уникального здания требуется специально настроенная и калиброванная модель здания, которая позволит сделать самую точную оценку потенциальных мер энергосбережения.

Модель здания можно применять на самых ранних стадиях процесса проектирования, когда зачастую существует самая хорошая возможность для усовершенствования геометрии, компонентов оболочки, энергетических систем и эксплуатации здания.

Однако влияние СО на фактическую эффективность (использование) здания намного важнее. В таком случае для обеспечения точной оценки желательно иметь расчетную модель здания, которая будет точно предсказывать фактические энергетические характеристики здания.

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (КСО)

Каталог сценариев оптимизации должен предлагать пользователям множество возможностей энергосбережения, охватывая широкий спектр направлений для усовершенствования управления энергопотреблением в зданиях.

Для некоторых сценариев может понадобиться динамическое моделирование для прогнозирования потенциального энергосбережения, а для некоторых - нет, например, для мероприятий по техническому обслуживанию.

Сценарии, для которых требуется моделирование, можно сгруппировать в 2 категории:

- **а.** <u>эксплуатационные сценарии</u> (например, системные настройки, техническое обслуживание, поведение)
 - Изучить (изначально) потенциальное влияние различных конфигураций на энергопотребление. Пользователь может в дальнейшем выполнить то, что предложено в сценарии оптимизации, действуя напрямую через систему управления зданием. После выполнения вводится новый набор данных измерений, и на основе расчета ОПЭ пользователи смогут оценить фактическое энергосбережение.
- **b.** <u>сценарии проектирования</u> (климат, геометрия, энергетические системы, углеродные выбросы, стоимость/затраты).
 - Например, архитектурные чертежи / чертежи систем могут, в первую очередь, использоваться для оценки различных вариантов (например, *тепловая изоляция*, *остекление*) и относительной оценки этих вариантов (например, *влияние по сравнению с исходным проектом*).

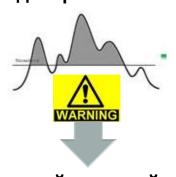
Каталог сценариев оптимизации (КСО)

Установленные правила - это **бьющееся сердце процесса принятия решений**, и определяется как механизм, **интеллектуально и динамично предлагающий** конкретные CO.

Вводимые данные.

вручную:

структура, счета, правила, настройки,


....

Установленные правила

Результаты моделирования

Предложенный сценарий оптимизации

Минск - 15 октября 2015 г.

17

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (КСО)

Пример установленных правил для эксплуатационного сценария: В определенной зоне не обеспечивается комфортная температура

ТРЕБУЕМЫЕ ДАННЫЕ	ПОКАЗАНИЯ СЧЕТЧИКА	РАСПОЛОЖЕН ИЕ	РАСЧЕТ
Измеренные			
температуры	Датчики		Рассчитать разрыв между комфортной температурой и
окружающего	температуры в	Комната / Зона	текущими значениями температуры, а также, как часто
воздуха: значения в	помещении	nomiara, coma	это случается
час и для одного	пошещении		516 51 , 146151
помещения			

Иногда существуют неполадки или неправильные настройки, не принимаемые в расчет управляющими зданиями, которые жильцы не могут исправить сами.

Данное установленное правило использует данные с установленных в комнате датчиков температуры; оно рассчитывает разрыв между комфортной температурой (устанавливается заведующим энергетическим хозяйством) и текущей температурой, и "счетчик" ускоряется каждый раз, когда температура выше или ниже установленной зоны комфорта. Затем

Когда такое событие повторяется слишком часто, например, более 5 часов в неделю во время использования помещения, выдается **Предупреждение**.

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (КСО)

Пример: результаты моделирования - **эксплуатационный сценарий:** В определенной зоне не обеспечивается комфортная температура

Список сценариев оптимизации на основе предупреждения: температура в помещении зачастую отличается от комфортных значений.

Nº	Категория	Название	Модель	Подробно
1	вентиляция	ИСПОЛЬЗОВАТЬ СИГНАЛИЗАЦИЮ УРОВНЯ СО2 ДЛЯ ВКЛЮЧЕНИЯ РУЧНОГО ОТКРЫВАНИЯ ОКОН	0	<u>просмотре</u> <u>ть</u>
32	L CMCTEMHALE HACTPOMEN	ОПТИМИЗИРОВАТЬ ЗАДАННЫЙ РЕЖИМ НА ТЕРМОСТАТЕ В ТЕЧЕНИЕ ДНЯ, ПОДДЕРЖИВАЯ ЕГО НА МИНИМАЛЬНОМ ДОПУСТИМОМ УРОВНЕ (НАПРИМЕР, ПРИ 21°С ПЕРЕКЛЮЧАТЬСЯ НА 20°С)		<u>просмотре</u> <u>ть</u>
33		ОПТИМИЗИРОВАТЬ ЗАДАННЫЙ РЕЖИМ НА ТЕРМОСТАТЕ В ЧАСЫ, КОГДА В ШКОЛЕ НИКОГО НЕТ (КОМПРОМИСС МЕЖДУ ПОДДЕРЖАНИЕМ МИНИМАЛЬНОГО УРОВНЯ И ОТКЛЮЧЕНИЕМ СИСТЕМЫ).	0	<u>просмотре</u> <u>ть</u>
34	СИСТЕМНЫЕ НАСТРОЙКИ	ВЕНТИЛЯЦИЯ В НОЧНОЕ ВРЕМЯ: ДЕРЖАТЬ ОКНА ОТКРЫТЫМИ ЛЕТОМ ДЛЯ ПОСТУПЛЕНИЯ СВЕЖЕГО ВОЗДУХА	0	<u>просмотре</u> <u>ть</u>

Текущие настройки: Пограничные условия

□ Текущая установленная точка отопления: 20 [°C]

□ График отопления ОВКВ: Понедельник ÷ Пятница, с 7.00 до 19.00

Заданный режим	Ежегодное энергопотребление котла [МВтч]	Ежегодное потребление природного газа [МВтч]	Ежегодные углеродные выбросы [кг СО₂]	Потребление природного газа Сопоставление с текущим заданным режимом
18	139,565	12924	27634	0,9198
19	145,691	13491	28847	0,9601
20	151,740	14051	30044	1,0
21	157,376	14573	31160	1,0371
22	162,390	15073	32153	1,0702

ПРОЕКТ ПРООН/ГЭФ

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (КСО)

Пример сценариев проектирования

<u>Отрегулировать таймеры для оптимизации включения/выключения системы отопления во</u> время отсутствия жильцов/людей - Отрегулировать время предварительного прогрева

Модель исходного уровня по сравнению с моделью сценария оптимизации

	Стратегии СО	исходное общее потребление энергии (МВтч)	Общее потребление энергии (МВтч) по СО	сценарий изменения (%)
	А: Изменить время предварительного обогрева до 3 часов: согласно исходной модели время предварительного обогрева - 2 часа, таким образом, режим предварительного обогрева увеличился до 3 ч.	252,4926	253,3777	-0,35
Варианты	В: Изменить время предварительного обогрева до 1 часа: время предварительного обогрева по сравнению с исходной моделью сократилось на 1 час.	252,4926	251,5832	0,36
	C: полностью отключить предварительный обогрев: предварительный обогрев полностью отменен	252,4926	250,6565	0,73

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (КСО)

Пример сценариев проектирования

Заменить окна и остекление: коэффициент теплопередачи в соответствии с типичными вариантами остекления

Модель исходного уровня по сравнению с моделью сценария оптимизации

	Стратегии СО	исходное общее потребление энергии (МВтч)	Общее потребление энергии (МВтч) по СО	сценарий изменения (%)
	А: Отрегулировать коэффициент теплопередачи в соответствии с параметрами стандартного двойного остекления с теплоотражающим покрытием: двойное остекление исходной модели заменено двойным остеклением с теплоотражающим покрытием.	252,4926	251,5226	0,38
Варианты	В: Отрегулировать коэффициент теплопередачи в соответствии с параметрами стандартного тройного остекления: двойное остекление исходной модели заменено тройным остеклением.	252,4926	249,039	1,37
	С: Отрегулировать коэффициент теплопередачи в соответствии с параметрами стандартного тройного остекления с теплоотражающим покрытием: двойное остекление исходной модели заменено тройным остеклением с теплоотражающим покрытием.	252,4926	249,308	1,26

"ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЖИЛЫХ ЗДАНИЙ В РЕСПУБЛИКЕ БЕЛА

Каталог сценариев оптимизации (СО)

Пример сценариев проектирования

<u>Установить фотоэлектрическую установку - Изменить площадь установленных</u> фотоэлектрических установок

Модель исходного уровня по сравнению с моделью сценария оптимизации

	Стратегии СО	Исходное общее потребление энергии (МВтч)	Общее потребление энергии (МВтч) по СО	Сценарий изменения (%)
	А: Изменить площадь фотоэлектрической установки до 25% площади крыши, обращенной на юг/юго-запад: исходная площадь установленной фотоэлектрической установки - 69,3 м ² : крыша, обращенная на юг = 124 м ² ; крыша, обращенная на юго-запад = 89,84 м ² ; крыша, обращенная на юго-восток = 34,70 м ² .	524,7	486,0	7,4
Варианты	В: Изменить площадь фотоэлектрической установки до 50% площади крыши, обращенной на юг/юго-запад: крыша, обращенная на юг = 226,05 м²; крыша, обращенная на юго-запад = 192 м²; крыша, обращенная на юго-восток = 317,15 м².	524,7	418,7	20,2
	С: Изменить площадь фотоэлектрической установки до 75% площади крыши, обращенной на юг/юго-запад: крыша, обращенная на юго-запад = 288 m^2 ; крыша, обращенная на юго-восток = $475,73 \text{ m}^2$.	524,7	473,6	9,7

Каталог сценариев оптимизации (СО)

Пример из практики: Энергетическая оценка здания

ЭТАП №1 :
Некоторые выбранные Сценарии оптимизации оценены индивидуально с учетом их:
🗖 затрат на реализацию,
🗖 энергосбережения и
🗖 периодов окупаемости.

CO Nº:	Затраты на единицу	Кол-во	ОБЩАЯ СТОМИОСТЬ	Экономия электроэнергии (кВтч)	Экономия природного газа (кВтч)	Сокращение затрат на электроэнергию	Сокращение затрат на природный газ	Простой период окупаемости (лет)	
ПО	ПОВЫСИТЬ ОБЩУЮ ЭФФЕКТИВНОСТЬ ОВКВ ПУТЕМ ОБЪЕДИНЕНИЯ ПРИВОДА ПЕРЕМЕННОЙ ЧАСТОТЫ И НЕСКОЛЬКИХ ДАТЧИКОВ ТЕМПЕРАТУРЫ								
8	3800 €	1	3800 €	267,75	439,59	65,49 €	37,28 €	36,98	
ЗАМЕНИТЬ	СИСТЕМУ ПРО	изводств	ВА ТЕПЛА						
26	18719 €	2	37438,54€	6,41	70035,68	1,57 €	5939,03 €	6,3	
УСТАНОВК	А РЕГУЛЯТОРОВ	з освеще	нности						
29	1,500 €	15	22500,00 €	5.073,74	0,00	1241,04 €	0,00€	18,13	
ОПТИМИЗИ ДО 20°C)	1РОВАТЬ ЗАДАІ	нный рех	КИМ НА ТЕРМОСТАТ	ГЕ В ТЕЧЕНИЕ ДНЯ, ПО	ОДДЕРЖИВАЯ МИНИГ	МАЛЬНО ДОПУСТИМ	ІЫЙ УРОВЕНЬ (НАПРИМ	1EP, 21°C COКРАТИТЬ	
32	Бесплатно	-	Бесплатно	100,13	14.629,65	24,49 €	1240,59 €	Бесплатно	
ОПТИМИЗИ	ІРОВАТЬ ЗАДАН	нный рех	ким на термостат	E В ЧАСЫ, КОГДА НИ	КОГО НЕТ (ПОДДЕРЖА	АНИЕ МИНИМАЛЬНО	ОГО УРОВНЯ ИЛИ ОТКЛ	ЮЧЕНИЕ СИСТЕМЫ).	
33	Бесплатно	-	Бесплатно	1476,60	102121,45	361,18 €	8659,90 €	Бесплатно	
ОТРЕГУЛИР	ОВАТЬ ТАЙМЕ	ры для о	ПТИМИЗАЦИИ ВКЛ	ОЧЕНИЯ СИСТЕМЫ ОТ	ГОПЛЕНИЯ ДО ПРИХО	ДА ЛЮДЕЙ			
35a	Бесплатно	-	Бесплатно	72,55	6.234,71	17,75 €	528,70 €	Бесплатно	
35b	Бесплатно	-	Бесплатно	205,53	0,00	50,27 €	0,00€	Бесплатно	
СОКРАТИТЬ	утечки возд	УХА В ЗДА	ИНИИ						
38	150 €	406	60900,00 €	281,90	21.813,94	68,95 €	1849,82 €	31,74	
ЗАМЕНИТЬ	ОКНА И ОСТЕК	ЛЕНИЕ							
43a	250 €	406	101500,00 €	161,38	11525,94	39,47 €	977,40 €	99,82	
43b	350 €	406	142100,00 €	321,49	22956,45	78,64 €	1946,71 €	70,16	
	гь изоляцию		ОЧКУ ЗДАНИЯ						
45a	74 €	4233	315269,50 €	2436,84	170219,04	596,05 €	14434,57 €	20,98	
45b	82 €	4,233	345526,50 €	2566,45	177999,18	627,75 €	15094,33 €	21,98	
45c	93 €	4,233	394898,00 €	2664,69	184145,42	651,78 €	15615,53 €	24,28	
УСТАНОВИ	гь фотоэлект	РИЧЕСКУК	О (ФЭ) ЭНЕРГЕТИЧЕС	кую установку					
55a	310 €	545	168950,00 €	36.731,05	0,00	3673,11 €	0,00€	46	
55b	290 €	995	288550,00 €	106.047,19	0,00	10604,72 €	0,00€	27,21	
■ 55c	300 €	745	223500,00 €	51.155,28	0,00	5115,53 €	0,00€	43,69	

Каталог сценариев оптимизации (СО)

Пример из практики: Энергетическая оценка здания

ЭТАП №2:

С учетом периода окупаемости выбраны пять лучших СО.

Далее все выбранные сценарии были реализованы на модели здания как **"единое" решение.**

Пример из практики

ЭТАП №2: Были достигнуты сокращение потребления конечной энергии, а также период простой окупаемости а годах.

прос	or onymach	пости а годах.					
CO №:	Категория	Выбор сценария NZEB	Энергосбережени е за год по сравнению с исходным уровнем	Энергосбер ежение за год	Сокращен ие затрат за год	Общая стоимость инвестиции	Простой период окупаемост и (лет)
0	Исходный уровень	Исходный уровень с ФЭ панелью площадью 69,3 м	524,7 [МВтч]				
26	Отопление	Заменить традиционный котел конденсационным.					
29	Освещение	Установить регуляторы освещенности в большинстве помещений здания	в				
33	Стратегии настройки системы	Заменить заданную температуру отопления с 16 до 10 [°C] в ночное время и в отсутствие людей		82,14%	57 210 €	743 387 €	
45	Элемент здания	Коэффициент теплопередачи внешней стены - 0,153 Вт/м²К с изоляцией 150 мм и коэффициент теплопередачи крыши - 0,1587 Вт/м²К с изоляцией 200 мм.	431 [МВтч]				12,99
55	Возобновляемые источники	ФЭ панель площадью 480 м2 на южной крыше, 315 м2 - на ЮВ крыше, 200 м2 - на ЮЗ крыше. Все ФЭ панели моделируются с номинальной частотой 0,19.	Почти достигается стандарт NZEB (Здание с практически нулевым энергопотреблением)				

Определенно *Навигационная система мер повышения энергоэффективности,* включающая **Каталог сценариев оптимизации,**

может стать:

- **продукт**, и специальной технологией, обеспечивающей продукт, и
- **предоставляющей услугу**, предоставляющей услугу,

чтобы предоставить оперативное руководство по следующим направлениям:

- помочь управляющим сократить затраты на энергию во многих зданиях;
- получить энергетические технологии компании по ограниченной стоимости;
- обеспечить энергосбережение в кратко-, средне- и долгосрочной перспективе;
- систематически, год за годом, сокращать энергопотребление.

СПАСИБО